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Efficient Lagrangian methodologies for quadrilaterals and hexahedral 
meshes have been available for a number of years.  Mesh generation 
issues for complex three-dimensional geometries can, however, be a 
severe limiting factor.  Mesh generation for triangular and tetrahedral 
meshes is readily available, but solid mechanics discretizations on these 
meshes are not so well established because of problems with locking.   We 
review a relatively new node-based uniform strain element as well as an 
SUPG stabilized formulation that hold  promise for effective simulations 
using a more general suite of elements. 

Introduction 
Lagrangian hydrodynamic and solid dynamic modeling represents a key modeling 

technology for Sandia National Laboratories.  Applications for Lagrangian technology 
range from quasi-static and transient dynamic Lagrangian modeling to Lagrangian time 
stepping embedded in arbitrary Lagrangian Eulerian frameworks for high energy, shock 
physics applications.  Commonly used transient dynamic and quasi-static modeling 
methodologies are based on updated Lagrangian formulations using a uniform strain 
element on quadrilateral and hexahedral meshes with a central-difference time 
discretization.   For some applications structural elements are required and, in addition, 
contact algorithms must be implemented in a scalable way.  Typically, stresses are 
updated using a mid-point increment formulation associated with a polar objective rate or 
with an incremental stress formulation.  The basic Lagrangian methodology commonly 
used at Sandia is based on the PRONTO3D Lagrangian code (Taylor and Flanagan, 
1987) with quadrilateral and hexahedral uniform strain elements.  These elements require 
hourglass control and an explicit artificial viscosity treatment to deal with shocks.   
Parallel computation uses a spatial domain decomposition approach in which the element 
patches are created and subsequently loaded into appropriate processors on a distributed 
memory machine.  Contact algorithms are an important part of the overall Lagrangian 
modeling capability (Brown, et al., 2003). 

Unfortunately, the quadrilateral and hexahedral technologies can be problematic due 
to difficulties with mesh generation, ad hoc hourglass control, and the inability of the 
formulations to well represent gradients on arbitrary meshes.  Triangular or tetrahedral 
elements present some advantage relative to “brick”-type elements, being amenable to 
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advanced automatic mesh generation, with a consistent reduction of the overall finite 
element analysis time. Typical implementations make use of a constant discontinuous 
approximation for the pressure, resulting in excessive element stiffness, which ultimately 
produces the so-called element “locking” in the incompressible limit.  Thus these 
simplicial element types have been avoided in the past. 

Newer numerical formulations may provide additional flexibility for Lagrangian 
modeling.  This paper provides a brief overview of two such new technologies.  We 
describe below a new nodal tetrahedral element that provides much improved properties 
over the classical tetrahedral element formulation while allowing for the use of more 
easily generated meshes.  Subsequently, we describe a new SUPG stabilized formulation 
for Lagrangian hydrodynamics that provides an alternative framework for a nodal based, 
robust, topology-independent methodology. 

A node-based uniform strain Lagrangian element 
Sandia has a long history of searching for triangular and tetrahedral element 

technologies that will match the quality and efficiency of average gradient quadrilateral 
and hexahedral elements (Dohrmann, et al., 1998; Key, et al., 1999).  The most promising 
approach is termed the node-based uniform strain element (Dohrmann, et al., 2000).  This 
approach uses linear shape functions on triangular and tetrahedral elements to construct a 
gradient approximation centered at nodes.  By extending the stencil and placing the 
stresses at the nodes, one obtains an optimal constraint ratio and elements that perform 
quite well at a slightly higher cost.  This is seen as a reasonable tradeoff when rapid 
results are needed on new geometries and the cost of mesh generation must be taken into 
account.  Figure 1 illustrates the stencil constructed around a node in the case of triangles.  
Each element of area,

J
A , can be related to an average gradient operator via 

/
k
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The B  matrix gives the average gradient operator for element J .  One then needs to 
develop gradient operators associated with the virtual hexagons surrounding each node in 
the figure.  To this end one defines a partitioning 
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and the assembled force at node I is given by 
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Figure 1: Stencil for node-based uniform strain element. 

A common test of element performance is the Taylor bar impact problem (Johnson and 
Cook, 1983). In Figure 2 and Table 1 we compare an eight node hexahedral mesh with 
two tetrahedral formulations developed at Sandia, the eight node tetrahedron and the 
nodal based tetrahedron. Both tetrahedral formulations alleviate the well known locking 
phenomenon observed in the standard four node tetrahedral formulation. This example 
and others that have been investigated demonstrate that the nodal based tetrahedron has 
an equivalent performance in terms of cost/accuracy relative to the eight node 
hexahedron. In general, the nodal based tetrahedral mesh will have a smaller critical time 
step than the eight node hexahedral mesh. However, the increased CPU time associated 
with the smaller time step is offset by increased accuracy of the solution. 
 

 
                      Hex-8               Tet-8                Tet-N 

 
Figure 2: Taylor Bar impact comparison (Example courtesy of S.W. Key, J.D. 
Gruda and A.S. Gullerud.) 
  
Table 1. Taylor bar impact comparison of numerical results with experiment. 
(Table courtesy of S.W. Key, J.D. Gruda, and A.S. Gullerud.) 

Element Final Length Base Diameter Diameter @ 0.2 L0  
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Hex-8 17.3 (mm) 14.6 (mm) 9.6 (mm) 
Tet-8 17.2 (mm) 14.4 (mm) 9.4 (mm) 

Nodal Based Tet 17.3 (mm) 14.6 (mm) 9.5 (mm) 
Johnson-Cook 17.2 (mm) 14.6 (mm) n/a 

Experiment 16.2 (mm) 13.5 (mm0 10.1 (mm) 

 

An SUPG approach for Lagrangian hydrodynamics 
We now discuss an alternative approach, based on the Streamline Upwind Petrov-

Galerkin formulation (Brooks and Hughes, 1982), resulting in a multidimensional 
formulation for the Lagrangian equations of gas dynamics. Equal order linear 
interpolation is adopted for all variables (namely displacements, velocities and pressures 
in the current formulation), which are centered at the mesh nodes. The globally 
continuous, piecewise-linear representation of the pressure field avoids problematic 
issues related to the reconstruction of its gradients. This last aspect is beneficial for brick-
type elements since improved accuracy is gained with respect to traditional hydrocode 
implementations. To introduce the method, let us refer to the formulation in the original 
paper. A straightforward Galerkin discretization of the advection-diffusion equation  

22 ,0cxxfc¶f¶k¶f¶-=<                           (7) 
results in the unstable central difference approximation of the derivative 

! 

"# "x . The 
upwind discretization is recovered by means of an appropriate numerical viscosity: 
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The use of such numerical diffusion operator in a finite element discretization would 
result in stability at the price of consistency and ultimately accuracy, since the addition of 
a numerical viscosity operator of this sort destroys the residual structure of the variational 
equations. The idea of Brooks and Hughes was to incorporate upwind in finite elements, 
from a variationally consistent point of view, by perturbing the test function space as in 
the following Petrov-Galerkin formulation (strong Dirichlet boundary conditions are 
assumed): 
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two-element assembly of the following perturbative term shows: 
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It is possible to prove that the SUPG method yields a nodally exact solution for the linear 
advection-diffusion equation in one dimension, and that in the multi-dimension case, 
although nodal exactness is lost, optimal convergence rates still hold. SUPG stabilized 
methods were successfully generalized to advective-diffusive systems of equations and 
compressible Euler and Navier-Stokes equations during the decade 1986-1995 (Shakib, et 
al., 1991). In this case SUPG stabilization is applied along characteristics. The 
Lagrangian hydrodynamics equations in conservative and quasi-linear form read: 
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where U is the vector of conserved variables, expressed in terms of the discretized 
variables Yh, A0 and Ai are the Jacobians of the time flux, U,  and the spatial fluxes, Fi, 
respectively.  The weak form of the equations integrated over a space-time slab of 
thickness [tn,tn+1] reads:  
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whereH is the Neumann flux and DC(Wh,Yh) is an artificial viscosity operator of the von 
Neumann-Richtmyer type with Noh heat flux correction. In the above the trial functions, 
h
Y , are assumed linear in time and the test functions, h

W , are assumed piecewise 
constant in time.  An explicit predictor/multi-corrector strategy is adopted to solve the 
nonlinear system of equations presented. 
 
 

Numerical Results 
A few numerical tests for the Euler equation in Lagrangian coordinates are reported 

here. The first test presented is a variant of the classical Sod test. Reflective boundary 
conditions are imposed at the two ends of the one-dimensional shock-tube domain, 
causing the shock wave generated in center of the domain to reflect on the right boundary 
and interact with the contact discontinuity. This example tests the ability of the method to 
deliver good solutions at the interface of the contact, where elements of very different 
size are next to one another. As shown in Figure 3, a standard hydrocode implementation 
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with HEMP viscosity (Benson, 1992) delivers very poor results when compared with the 
new approach. A large spike in the pressure and velocity completely destroys the features 
on the right of the contact discontinuity. 

 
 
 
 
 

 
 
 

 
Figure 3.  Sod test at T=0.9 (100-element mesh at CFL=0.9). Standard hydrocode 
(left) compared with the SUPG method (right). Top: velocity. Bottom: pressure. 
Notice the spurious spike present in the hydrocode solutions, absent for SUPG.  

 
The second test (Figure 4) is the well-known Saltzmann piston test for a two-

dimensional quadrilateral grid. The SUPG method ran long enough for the shock to 
reflect six times. We believe the test could have been run further, given the quality of the 
final solution.  

 
Figure 4.  Saltzmann test, CFL=0.9. Snapshots of the pressure taken before the first 
shock reflection (left), after the first reflection (center), and after the fifth reflection 
(right). Notice the quality of the solution in terms of the alignment of the shock front 
and the alignment ofhorizontal mesh lines. 

 
The third and last test presented is a Noh implosion test for a triangular mesh (Figure 

5). Noticeable underheating is observed in the density profiles at the wall locations. 
Notice the absence of oscillations in the finite element solution. 
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Figure 5. Noh test, triangular grid (aspect ratio 1:1), CFL=0.75, pressure (top) and 
density (bottom). Notice the smoothness of the density and pressure profiles. 

Conclusions 
Useful and efficient algorithms on simplicial meshes are being developed and 

compared favorably with older methodologies designed for quadrilateral and hexahedral 
meshes.  These algorithms promise to lead to general techniques for solution of 
Lagrangian solid mechanics problems on more general finite element meshes. 
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